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The effect of a density stratification on the steady, mechanically driven motion 
of a viscous fluid in a rotating cylinder with axis aligned with the rotation and 
gravity vectors and with parallel top and bottom surfaces that slope with respect 
to the plane perpendicular to the rotation vector is studied by a linear theory. 
Primary attention is given to a study of the alteration of the characteristics of 
the flow of a homogeneous fluid by the addition of a weak stratification. It is 
found, for example, that in the range E3 < aS < E ,  where E = v/sZL2 and 
uh' = uagATo/KQ2L, and with a homogeneous boundary condition on the per- 
turbation temperature, the interior velocity is parallel to the direction perpendi- 
cular to the plane determined by the vector normal to the top surface and the 
rotation vector. The circulation closes in an inviscid, but heat-conducting, 
boundary layer of thickness EQ(u-S)-* on the side wall. Thus, with stratification, 
the steady flow in this configuration differs markedly from the corresponding 
flow in a cylinder where the top and bottom surfaces lie in planes perpendicular 
to the rotation vector. The difference is caused by the fact that in the container 
with sloping surfaces the basic stratification interacts with the geostrophic 
flow whereas, in the other case, the interaction is with the much smaller Ekman 
layer suction velocities. 

1. Introduction 
The effect of a stable density stratification on the steady, linear motion of a 

contained rotating fluid has been studied by Barcilon & Pedlosky ( 1 9 6 7 ~ ) .  
In  a second paper (19673) they developed a unified linear theory which showed 
how, as the basic stratification was increased, the results from the theory of 
homogeneous, rotating fluids merged with the results for substantial strati- 
fications. In the latter case, they considered the steady, mechanically driven 
motion in a cylindrical container with a boundary condition of zero heat flux 
on the perturbation temperature. The rotation and gravity vectors were assumed 
to be antiparallel and the axis of the cylinder was aligned with the rotation vector. 
The top and bottom surfaces of the container were flat; that is, they were formed 
by parallel planes that were perpendicular to the rotation vector. In  that problem 
the primary interaction of the flow with the basic stratification was through the 
small O(E*), where E is the Ekman number, vertical velocities pumped by the 
Ekman layers on the top and bottom surfaces. 
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Now if we consider, for a homogeneous fluid, the steady, mechanically driven, 
linear motion in a rotating cylinder with top and bottom surfaces parallel, 
but sloping with a small angle with respect to the plane perpendicular to the 
rotation vector (see figure l), we find that the resulting flow is qualitatively the 
same as that in the corresponding problem in a cylinder with flat top and bottom 
surfaces. Under the restrictions of the linear theory the fluid can move in a similar 
manner in both containers since the distance parallel to the rotation vector, 
between the top and bottom surfaces, does not vary in either case. If, however, 
we consider the changes in the characteristics of the flow as a weak stratification 
is added and increased, we find that the results for the two geometries differ 
considerably. The essential difference is caused by the fact that in the cylinder 
with sloping surfaces the stratification interacts with the order one geostrophic 
velocity, whereas in the cylinder with flat surfaces the primary interaction is 
with the much smaller Ekman-layer suction velocities. For convenience we will 
refer to the container geometry shown in figure 1 as the ‘doubly sliced’ cylinder. 

The steady flow in the ‘doubly sliced’ cylinder is of interest, therefore, because 
it presents a model where the effects of rotation and stratification interact in a 
fundamental manner which is basically different from that studied previously. 
We remark that some aspects of the unsteady inviscid motion of a weakly strati- 
fied, rotating fluid in containers with geometries similar to that of the ‘doubly 
sliced’ cylinder have been investigated (Allen 1968) and the appearance of some 
rather interesting low-frequency wave motions has been predicted. 

In the following sections we present a study of the effect of a weak stratification 
on the steady motion of a rotating fluid in the ‘doubly sliced’ cylinder geometry. 

2. Formulation 
We consider a viscous, heat-conducting, incompressible fluid, which satisfies 

the Boussinesq approximation, in a frame of reference rotating with a uniform 
angular velocity 8 = !& and acted on by a gravitational acceleration g = - gfc 
which is antiparallel to the rotation vector. The governing equations for steady 

motion are v*q = 0, 

q%+2Qfrx  q = - ( ~ / P , ) ~ P - ( P / P , ) g f r + ~ ( P / P , )  Q2VIfrx r12+vV2q, 
q -  V T  = K V ~ T ,  

P = POP - 4 T  - To)], 
where q, p ,  p and T are respectively the velocity, pressure, density and tempera- 
ture of the fluid a t  a point r; v, K and a are respectively the constant kinematic 
viscosity, thermometric conductivity, and coefficient of thermal expansion ; 
po and To are constant reference values of the’density and temperature. 

We assume that the Froude number Q2L/g is small and consider a linear 
equilibrium temperature and density distribution (see Greenspan 1968, $1.4) 

given by T, = To+AToz/L,  

p s  = POP - EAT*Z/Ll, 

where AT, is the basic temperature difference imposed over the height L. 
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The variables are non-dimensionalized in the following manner: 

q = Uq*, r = Lr*, t = Q-lt*, 

p = p0-pogLz*+~pogLaAToz*2+poUSLLp*, 

where po  is a constant reference pressure and U is a reference velocity. 

t l  

FIGURE 1. The 

Assuming that the Rossby number 6 = U / Q L  is small such that the non-linear 
terms multiplied by E can be neglected, we find that the resulting dimensionless 
equations are (dropping the asterisks) 

v - q  = 0, (2.1) 

where E = v/QL2 is the Ekman number, CT = V / K  is the Prandtl number, and 
8 = agATo/Q2L is the inverse of the internal Froude number. The parameter X 
is a measure of the stratification and can also be written as S = N2/Q2,  where 
N is the Brunt-Vaisala frequency. 

9-2 
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The cylindrical container is shown in figure 1. The z axis is aligned with the 
axis of the cylinder and with the basic rotation vector. The top and bottom sur- 
faces are parallel planes with the outward pointing unit normal vectors given by 

where a and b are the direction cosines, such that a2+ b2 = 1, and i, j and fr are 
the unit vectors in the x, y and 2 directions. The dimensionless radius and height 
are ro and 1 respectively. 

It will be convenient to refer to the velocity components in both Cartesian 
and cylindrical polar co-ordinates and we use the following notation : 

where F and 6 are unit vectors in the r and 0 directions and the line 0 = 0 is 
aligned with the positive x axis. 

We consider the motion driven by a rigid rotation of the top surface ir; its 
own plane with angular velocity, relative to the rotating frame, of er;lQ which 
in dimensionless form we write as uT = rr'. The boundary conditions on the 
velocity are therefore 

fiT = -A, = ak-b3, 

q = u i + v j + w k  = c lP+ZP6+Wk,  

q = u~(xif[ay+b(z-1)][a3+bk]} O n  2 = 2~ = I+(b /a )y  

and q = 0 on z = zB = ( b / a ) y  and on r = ro. 

We use either T = 0 or ii - VT = 0 as the boundary condition for the temperature 
field. 

The Ekman number E will be assumed to be small and boundary-layer methods 
for the limit E 3 0 will be used. The parameters cr and S appear in the combina- 
tion US which, following Barcilon & Pedlosky (1967 b) ,  will be called the stratifica- 
tion. Note that for US = 0 the temperature is equal to a constant and, if the 
pressure is redefined, the equations reduce to those governing the motion of a 
homogeneous fluid. Since we are interested in the modifications of the charac- 
teristics of the flow of a homogeneous fluid produced by the addition of a weak 
stratification, US will also be a small parameter. As usual, to maintain the validity 
of the approximate solutions, it  is necessary to relate the two small parameters 
as and E and, in general, crS will be ordered with respect to some power of E 
as E -+ 0. In addition, to facilitate solving the problem, we will consider that the 
top and bottom surfaces have a small angle of slope. That is, b will also be con- 
sidered a small parameter. However, in general, b will be considered to be of 
order one compared with crS or E as E -+ 0. Because of the attendant difficulties 
involved in the asymptotic solution of a problem with three small parameters 
we will only attempt to find the lowest order approximationsfor the flow variables. 

In some of the following arguments, concerning the inviscid interior flow, it is 
convenient to use the 'thermal wind' relation 

(2.4) k k.Vq = 4 x VT, 
obtained by taking the curl of equation (2 .2) ,  using (2.1), and neglecting the vis- 
cous term. In particular, the y component of this equation 

v z =-ZT 2 x7 (2.5) 

where the subscripts denote partial differentiation, will be useful. 
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Some of the consequences of stratification in the geometry of the ‘doubly 
sliced’ cylinder can be seen from the following order-of-magnitude considerations. 
For small values of the stratification the flow in the interior is expected to be 
invisicid and to have an order 1 velocity that satisfies q - ii = 0 on the boundary. 
For example, on the top surface we have 

q.iii, = aw-bv = 0. (2.6) 

It follows that both w and v will be of order 1. Now with w = O(1) we see from 
the energy equation that T = O(aS/E). Consequently, when US increases to the 
point where U# = O(E), we find that Twill be O( 1) and will enter into the thermal 
wind equation (2.4) for the order one velocity field. Therefore we can expect 
aS = O(E) to be a critical stratification. 

Now let us consider the case where as > O(E). From (2.3) we have 
w = O(E/UX) T. Surmising from (2.5) that, for an order 1 temperature field, 
v and T in general have the same order of magnitude, we find w = O(E/US) v. 
So, for US > O(E),  we can conclude that v should be of a larger order than w. 
However, at the same time the boundary condition (2.6) implies that v and w 
must be the same order, which obviously results in a contradiction. Note that 
in these arguments there has been nothing said about the velocity in the x 
direction since ii,-i = 0. The above contradiction implies that, for aS > O(E) ,  
the flow must adjust in a manner which differs from that implicitly assumed in 
these rough order-of-magnitude arguments. In  fact, we will see in the next sec- 
tion that, for increasing a#, the characteristics of the flow change drastically 
before the critical stratification US = O(E) is reached. 

3. Analysis 
We start by examining the effect of the smallest stratification that can sub- 

stantially alter the motion. This value is crS = O(E3). In  this case the temperature 
field that is generated by the vertical velocity does not affect the order 1 motion 
directly. However, it does affect the O(E4) flow induced by the Ekman layers 
and this in turn can alter the lowest-order flow field. Therefore, we set 
A = aS/E* and, for the interior, expand the variables in powers of Ei .  

4 = qo+Ekl,+ ...’ 
p =po+E$pl+ ..., 

T = E)To+ .... 
Substituting the expansions into (2.1)-(2.3) we find that the O(1) and O(E4) 

(3.1) 
interior equations are v - q ,  = 0, 
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The O( 1)  equations are the same as those for the geostrophic flow of a homo- 
geneous fluid. From (3.1) and (3.2) we can obtain the Taylor-Proudman theorem 

L v q ,  = k.vp, = 0. (3.6) 

With the use of the inviscid boundary condition go - fi = 0, applied on the top 
and bottom surfaces, the velocity field can be expressed as 

q, = *a-lfiT x vpo. (3.7) 

The boundary condition q, - F = 0 on the side wall must also be satisfied and in 
terms of the pressure this becomes poe = 0 or preferably 

po = 0 on r = ro. (3.8) 

The O(E4) variables are conveniently expressed in terms of their components 
in Cartesian co-ordinates, 

(3.9) 

(3.10) 

(3.11) 

where Cl is an undetermined function of x and y. In addition, from (3.3) and 

aw,/az = 0. (3.12) (3.4) we find 

At  these low values of the stratification the boundary layers on the top and 
bottom surfaces are ordinary Ekman layers and the expressions for the O(E4) 
normal fluxes reduce to (see Greenspan 1968, $2.6) 

(3.13) 

q, 13, = +a-*<o - fi, at z = z, = @/a) y, (3.14) 

where co = v x qo is the vorticity and cT * fi, = 2wT is twice the angular velocity 
of the rigidly rotating top surface. 

The O(1) flow field is determined by utilizing the equations (3.13) and (3.14) 
for the normal velocities induced by the Ekman layers. These equations can be 

awl - bv,(z = x T )  = - ta-BV2,po -+ a-hT  (3.15) written 

and awl - bv,(z = 2,) = + &a-8V$p0, (3.16) 

where we have substituted equation (3.7) for qo and where only the explicit 
dependence of v1 on z is indicated. Also, we use the notation that 

q 1 * fi, = - +a-+(<, - <,) * fi, at z = xT = 1 + @/a) y, 

a 2  a2 
v2,=-2+(1-b2)- 

ax aY2 
Subtracting (3.16) from (3.15), and using the x independence of po and w1 

from (3.6) and (3.12) we find, after substituting expression (3.10), that 

(3.17) 
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A second equation relating p ,  and To is given by (3.5),  which can be written 

(3.18) 

where we have used go * f i T  = 0, (3.6) and (3.2) to write 

wo = (b/a)vo = (Wa)Poz. 
Equations (3.17) and (3.18), for the two variablesp, and To, have to be solved 

simultaneously with the boundary condition (3.8) on the pressure and, since 
no viscous boundary layer can affect the temperature or heat flux at  these low 
values of the stratification, with either T = 0 or f i e  VT = 0 as the boundary 
condition on the temperature. 

As we mentioned before, it is convenient to find an approximate solution to  
this problem for small slopes of the top and bottom surfaces; that is, for small 
values of the parameter b. This allows us to make certain simplifications in (3.17) 
and (3.18). We are, however, mainly interested in the behaviour of the solutions 
as h attains large values and consequently we have to retain certain of the terms 
multiplied by b. Therefore, considering b < 1 and retaining terms that are im- 
portant for bht % 1, we find that (3.17) and (3.18) can be approximated by 

and 

(3.19) 

(3.20) 

where the boundary conditions on the top and bottom surfaces are now to be 
applied at  z = 1 and z = 0, respectively, and where, when the heat flux condition 
is used on these surfaces it becomes, in the first approximation, To, = 0. 

Let us f i s t  examine the solutionsfor h = 0. In that case it follows that To = con- 
stant, whereupon (3.19) reduces to 

The solution, with boundary condition (3.8), is 

PO = &JT(T2-rg), 

which gives ' lpo = +(ap,/ar) = &,r. 

(3.21) 

(3.22) 

Thus, the first approximation for b < 1 and h = 0 is identical to the corres- 
ponding result for a homogeneous fluid in a cylinder with flat top and bcttom 
surfaces. In  addition, there would, of course, be viscous boundary layers of 
thickness Ek and E )  on the side walls but these do not affect the interior dynamics. 

In  order to see clearly the effect on the flow field of an increased stratification 
it is appropriate to consider large values of h and to solve (3.19) and (3.20) 
asymptotically for A > 1. Once the solution is obtained we can check on just 
how large h can be before the approximations made in arriving at the solutions 
are invalidated. We remark that similar equations, without the z dependence, 
arise in magnetohydrodynamic pipe flow. Some cases are solved by Cole (1968, 
$4.3), where references to the literature are given. 
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Considering equations (3.19) and (3.20) for h $ 1 we find that the solutions 
exhibit a boundary-layer behaviour, with boundary layers of thickness A-* 
at the side walls. We therefore assume a composite expansion, the appropriate 

(3.23) 
form of which is 

To = Too + h-tTol + . . . + Too + hdp01 + . . . , 
po = A-*(poo + h-&pol + . . . + $00 + At@, ,  + . . .), (3.24) 

where the tilde symbol denotes a boundary-layer function of the boundary- 
layer variable p = (yo - r )  Ah. These functions approach zero exponentially fast 
as p + co. We also separate out the x averaged part of the temperature by writing 

where 

Substituting the expansions into the equations we find that the lowest order 

(3.25) 
a 
ax 

interior equations are 
-{Too} = - 20, b-l, 

a 
a,Poo = 0. (3.26) 

Therefore, we obtain {Too} = - ~ ( J J , ~ - ~ X ,  (3.27) 

Po0 = Poo(Y 1, (3.28) 

where the pressure poo(y)  has to be determined with the aid of the boundary- 
layer solutions and where the arbitrary function of y ,  obtained on integrating 
(3.25), has beenset equal to zero since equations (3.19) and (3.20) and the bound- 
ary conditions imply that To(z) = - To( - z) and po(x)  = po(  - %). 

The boundary-layer equations are 

a 
aP2 aP 

a- = -bcose-{~oo}, 

with the solutions 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

We will first consider the problem where the wall temperature is specified and 
equal to zero. To satisfy the boundary conditions at r = ro we require that 

m o o ( y  = .,)} + {%'oo(P = 0)) = 0 
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and P O O P  = ro)+Foo(P = 0) = 0. (3.35) 

These conditions determine Cl(0) and poo(y) in the form 

Cl(8) = 2w, b-4, COB 6' 

and poo(r sin e) = - ~ t w ,  b-l(ri - r2 sin2 e)+ 
or poo(y) = - 2%.0Tb--1(r&y2)+. (3.36) 

The resulting velocity field in the interior is 

uoo = - 2+wTb-ly(r; - yZ)-&. (3.37) 

We note that the lowest-order velocity is strictly parallel to the x axis. In  
addition, we can see that the interior vorticity has the same sign as the angular 
velocity of the top surface. 

The above solutions are not valid in a small region of extent ro - r = O(A-*) 
and [ B  (i.e. y = & ro). 
The interior velocity, which is singular a t  y = k r,, becomes O(A-*) as this region 
is approached. 

The remaining portion of the temperature field, Too, has yet to be determined. 

= O(h-4) around the points r = ro and 8 = & 

(3.38) 

Since Too does not pasticipate directly in the boundary layers it must satisfy the 
boundary conditions on the side walls by itself. Also, it must take values at  x = 0 
and x = 1 such that Too(z = 0)  = Too(x = 1) = 0. Therefore, the boundary con- 
ditions on roo are 

Yoo(r  = To)  = 0 (3.39) 

In addition, it must satisfy the condition 

~ o l ~ o a x  = 0. (3.41) 

It is easily shown that equation (3.38) and conditions (3.39)-(3.41) are sufficient 
to determine both Fo0 and pol$. 

The boundary condition (3.40) should also contain the z averaged solution 
for the temperature in the small regions around r = ro and 8 = & 2p. However, 
a good approximation to the solution for Too can be obtained by neglecting 
the boundary-layer corrections in condition (3.40) and approximating it by 

Foo(2 = 0) = Fo0(z  = 1) = --{Too}* (3.42) 

The resulting solution is 

x [ cosh (;;) - --sinh (;;)l-l. - (3.43) 
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where &(a,) = 0. With the use of the approximate condition (3.42), however, the 
accompanying formal representation of the solution for pOlx (which equals 
4b-1F00,(z = l , x , y ) )  is in the form of a divergent Fourier-Bessel series. The 
values of pols give the velocity components vol and wol. However, these com- 
ponents are O(A-l) and are therefore smaller than the primary velocity field uoo, 
which is O(A-4) and is given by (3.37). Consequently, the obtainment of an 
accurate representation of poIx has not been pursued. 

The main features of the flow for large h have been found. We see that the 
interior velocity has fallen in magnitude from O( 1) to O(A-b) and, in addition, 
has become parallel to the x axis. The circulation closes in a boundary layer of 
thickness A-*, i.e. E%(uS)-*, in which there are O( 1) velocities in the 0 and z 
directions. Heat conduction is important in this boundary layer. However, it is 
strictly an inviscid layer since the viscous terms do not enter. 

The basic relation for the interior z averaged temperature, equation (3.25), 
corresponds to the fact that, for A 1 the interiorvelocityhas fallen in magnitude 
to O(A-*) and, consequently, an order 1 Ekman layer is not required onthe bottom 
surface. The O(E*) velocity ql, which is still required by the suction from the 
Ekman layer on the rotating top surface, must then satisfy ql.fi, = 0 at the 
container bottom and ql.fiT = 2wT at the top. Equation (3.25) results directly 
from these conditions, equation (3 .  lo) ,  and the z independence of w1 and requires 
the existence of an O(E*) temperature field in theinterior. We see therefore 
that, as h increases, the O( 1) interior flow crowds into boundary layers on the 
side walls where, in the heat equation, convection by the O(1) vertical velocity 
balances the heat conduction resulting from the large gradients in temperature 
which are necessary to adjust the interior temperature field to the wall boundary 
condition. 

With the solution for large A determined, we find, on examination, that it 
remains a valid approximation for A < O(E-&), i.e. for OS < O(E). At aS = O(E) 
the thickness of the A-* layer becomes O(E))  and the viscous terms that are 
present in the E i  side-wall layer have to be taken into account. Also, the velocity 
components vO1 and wol become O(E*), which then coincides with the magnitude 
initially assumed for the other components, v1 and wl. It is also noteworthy that 
as aS+O(E) the largest interior velocity component uoo falls in size to O(E4). 

4. Specified wall temperature: G S  = O(E) 
Utilizing the information gained from the large h solution of the last section 

we can proceed and study the flow for (TS = O(E). We set p = uS/E and expand 
the interior variables as follows 

q = Eho(y)f + EBq, + . . . , 
p = Eipo(y)  + E*pl + . . . , 
T = E*T,+ .... 

The equations for the O(E$) and O(E*) variables are 

2uo = -Pay, 
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V .q1  = 0, (4.2) 

(4.3) 

pql k = V2To. (4.4) 

awlpz = 0. (4.5) 

2k x q1 = - vp, + To&, 

In  particular, we find from (4.2) and (4.3) that 

The velocity component v1 can again be written in the form given in (3.10). 

top surface and the velocity boundary condition there is 
An Ekman layer with an induced normal velocity of O(E4) still exists on the 

q1 * fi, = - aw, + bvl(x = 0) = 0. (4.7) 

Adding equations (4.7) and (4.6) and using (3.10) and (4.5) we find that 
{To}% = - 2w,b-l. Therefore, we again obtain 

{To} = - 2wT b-12, (4.8) 

where we have used, at  this point, the result, found when the wall boundary 
conditions are applied to the interior and boundary-layer solutions, that the 
arbitrary function of y, obtained on integrating for {To}, has to be equal to 
zero to maintain po  = po(y) .  

The largest side-wall layer now has a thickness which is O(Ef) .  We therefore 
introduce a stretched variable 7, defined as 

7 = ( !r0- -r )E4 

and scale the boundary-layer correction variables a.s 
- 
cd = EiZo+Eatll+ ..., 
G = i i0+Ef5 ,+ . . . ,  

w = w,+EhZ,+..., 

1, = Eipo+E*&+ ..., 
P =  Ea!Fo+ .... 

The boundary-layer equations are 

It follows that 
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- 
w1z = @ 0 7 7 ~ 9  (4.10) 

(4.11) 
- 
?& = - *(wo777 -t To& 

In  addition) from the boundary conditions Qo* A, = qo * fi, = 0 we obtain 

a%, = b cos 6U0. (4.12) 

The Ekman layer conditions at  the top and bottom surfaces, within. the E t  

(4.13) 

(4.14) 

Subtracting (4.14) from (4.13)) using (4.12), and substituting the results of 
integrating (4.10) and (4.11) with respect to z, we obtain 

layer, can be expressed as 

aG,(x = 1) - b cos 6ii,(z = 1)  - b sin 8, = +a-&(b cos 6WO7 + aUo7), 

aiZl(z = 0) - b cos BU,(z = 0) - b sin BGo = - $ a d ( b  cos 6G0, + a@,?). 

*o[a+(b2/a)cos2B]+b 3- cos8- aFo = 2a-~[a+(bz/u)cos26]-. a@, (4.15) 

ar3 a7 a7 

It is convenient to work with the variables j io  and Fo. Therefore) using the relation 
2po = -+po7 and (4.12) and, in addition) considering b <i 1, we find that (4.9) 
and (4.15) reduce to the two governing equations for the boundary-layer variables. 

- 

(4.16) 

(4.17) 

The solutions to (4.16) and (4.17) can be written as 

Po = Dl(S) e-317 + D2(6) e--s27 

Po = 2(s,D, e-S17 + s, D, e-sz~)(,ub cos 8)-l, 

(4.18) 

(4.19) and 

where s1 and s2 are the two roots, with positive real parts, of 

s2 = 1 (1 - pb2 COS' $)*. (4.20) 

The appropriate boundary conditions to be applied at  the wall are 

(4.21) 

(4.22) 

(4.23) 

where (4.21) comes from the requirement that F0(y = 0) = 0. Applying these 
conditions we find 

D, = - ( 4 ~ 2 ) ' D ~ .  

and 
4 s s o  r 

p,(rosin8) = - O 
pb2(s1 + 82) 

(4.24) 
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Let us first examine the interior solution for the case p < 1. Approximations 

s1 w 24, s2 z p*23bl cos 81. (4.25) 

We recognize s1 as the usual E i  layer root and, taking into account the boundary- 
layer scaling, we recognize s2 as the A-4 layer root obtained in $3. In  this case po 
simply has a small O(p4) correction to the expression given in (3.36). 

When p increases to the value p = b-2 the two real roots coalesce at  the points 
6 = 0 , ~ .  For larger values of ,u the roots are complex conjugates a t  values of 
6 such that Icos61 > ( p V - 4 .  For p p 1 and for lcos81 B (pb2)-* the roots are 
given approximately by 

g1,2 w (1 +i)(p%IcosBj)42-*. (4.26) 

Using approximation (4.26) in (4.24) we find that the interior pressure is deter- 
mined in the form 

po(y) = - 28 w t  - (ro 2 - y2)t. (4.27) 

to the two roots can be found from (4.20) and are 

bgpf 
The resulting velocity field is 

(4.28) 

where again the solutions are not valid in small regions around the points y = & r,. 
The lowest-order velocity (4.27) is still parallel to the x axis but the explicit 
dependence on y has changed. 

The remaining portion of the temperature field Yo = To - ({To) + To) and the 
velocity component w1 can be obtained in the same manner as indicated for the 
variables Too and pOl2 in § 3. In  fact, To has the same approximate value as that 
given for Too in (3.43) since the x averaged interior temperature is the same in 
both cases. The velocity component v1 is given by the expression 

(4.29) 

For p $ 1, w1 = O(p-l) and therefore v1 is approximately equal to the second 
term in the above equation. 

The solutions for large p are valid for p, c O(E-)) or a8 < O(E%). At the point 
= O(E3) the lowest order interior pressure field has fallen in magnitude to 

O(E4) and this invalidates our prior assumptions. In  addition, the boundary layer 
thickness varies as E-$ri, i.e. as E*(a8)-4, which, at  m.9 = O(E4) becomes 
O(Ei), necessitating the inclusion of the additional viscous terms present in the 
E* layer. We note that the stratification aX = O(E%) is the critical value for the 
side-wall layers found by Barcilon & Pedlosky (1967b). At this critical stratifica- 
tion the magnitude of the interior velocity field in the ‘doubly sliced’ cylinder 
has fallen to O(E*) while the largest velocities in the side-wa.11 layers are O(EB). 
The boundary-layer scale of E*(rX)-* was also found by Barcilon & Pedlosky 
and is that of the buoyancy layer. 
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5. Adiabatic wall: US = O(E8) 

at the container surface is one of no heat flux, i.e. where 
Let us consider now the case where the boundary condition on the temperature 

A*VT = 0 (5.1) 

on the boundaries. We return to the developments in Q 3, where crS = O(Et) ,  and 
solve the problem posed by (3.19) and (3.20) with boundary conditions (3.8) 
and (5.1). We are again interested in the solution for h $- 1 and expand the vari- 
ables in the same manner as given in (3.23) and (3.24). 

On the top and bottom surfaces the boundary condition (5.1) becomes, with the 
approximation b < 1, Toos(z = 1 )  = Tooz(z = 0 )  = 0. As a consequence, we find 
Too = 0 which, of course, implies Too = (Too} and for convenience we drop the 
average symbols. 

The interior temperature Too and pressurep,,, are again given by the expressions 
(3.27) and (3.28). The boundary-layer equations are the same as before and the 
solutions are given by (3.32) and (3.33). The conditions to be applied at  the wall are 
(3.35) and 

It follows from (5.2) that Too = 0. This in turn implies Boo E 0. Equations 
(3.28) and (3.35) then require that poo E 0. Therefore, no boundary-layer correc- 
tions are needed at this order and, consequently, no interior pressure or velocity 
field of osder A-4 is present. With the adiabatic wall condition, only an adjust- 
ment in slope of the interior temperature field is required in the boundary layer. 
This results in smaller, by O(h-*), boundary-layer temperature gradients 
compared with the case where the value of the temperature itself has to be ad- 
justed. As a result, we find that, with an adiabatic wall, the velocities in the 
boundary layer, and hence in the interior, are also smaller by at least O(h-4). 

The boundary-layer equations and solutions at  the next order, for pol and pol 
are identical with those for Too and Boo. In  addition, the interior variables must 
satisfy 

from which, with (3.27), we obtain polz = 0 and consequently that pol = pol(y). 
The boundary condition on the pressure is 

V'TOO = 4bPOlZ 

POlP = ro) +Po,(&) = 0) = 0. (5.4) 

Applying conditions (5.3) and (5.4) we find that the solutions are 

flOl = 4uTb-'exp( - 2-4bIcosBlp), 

pol = - 4#~b-'. 
The largest velocities in the boundary layer are O(A-4). However, since pol 

is a constant there is, in this case, no interior velocity field of order A-1. If we 
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attempt to calculate the lowest-order non-zero interior velocity field by applying 
the same procedure to find higher order terms, we encounter inconsistencies. 
Apparently, a consideration of the solutions in the regions near the points 
r = ro, 8 = f & 7 ~  has to be included and the results govern the form of the expansion 
to higher order. An attempt a t  this extensionis met with ardytical difficulties and 
has not been completed. We note, however, that for a more general form of the 
driving motion of the top surface the lowest-order interior pressure pol is not 
constant and a non-zero interior velocity field of order h-l exists. For example, 
with a rotation of the top surface a t  a variable velocity of Z P ~  = (r’/r0)3, where 
Z P ~  and r‘ refer to polar co-ordinates in the plane of the top surface, we find 

pol = - l S ~ ~ r ~ ~ b - ~ ( x ~ +  2y2- &3). 
Note that here the lowest-order velocity field is not parallel to the x axis. 

In  general, therefore, for an adiabatic wall and for h 9 1 we conclude that the 
interior velocity field is O(h-l) or smaller. The large h solutions are again valid 
for crS < O(E) and the above results indicate that for as = O(E) the interior 
velocity field is O(E3). 

We should add the comment that if solutions are sought for stratifications with 
crS > O(E) the solution for the Ekman layer on the top surface results in a non- 
zero heat-flux boundary condition on an interior temperature field of magnitude 
O(vSIE4). This is greater than O(E4) for vS > O(E)  and can be expected to cause 
additional complications in the adjustment of the flow field. 

6. Conclusions 
We have considered the effects of a weak stratification on the steady, linear 

motion of a fluid in a rotating, ‘doubly sliced’ cylinder. For a surface-boundary 
condition of zero perturbation temperature we found that, as the stratification 
increased from zero, the characteristics of the flow of a homogeneous fluid were 
greatly altered before the critical stratification crS = O(E)  was reached. In  the 
region EQ < crS < E the largest component of the interior velocity field had 
magnitude O(E*(crS)-*) and was parallel with the x axis. An inviscid, but heat- 
conducting boundary layer of thickness E*(vS)-* existed on the side wall. As 
the stratification increased to O(E3) the interior velocity fell in magnitude to 
O(E*). With a boundary condition of zero heat flux we found that, in general, 
the interior velocity field fell to O(E*) for stratifications approaching O(E). 

These results are very different from those found by Barcilon & Pedlosky 
(19676) for the steady motion in a cylinder with flat top and bottom surfaces. 
In  that case, the largest component of the interior velocity field remains identical 
to the result for a homogeneous fluid,given by (3.22),for stratifications approach- 
ing O(E4). Therefore we can see that, according to the linear theory, a small change 
in geometry that leaves the characteristics of the flow of a homogeneous fluid 
unaltered can result in a substantial modification of the flow field when a weak 
stratification is present and interacts with the geostrophic flow. 
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